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LETTER TO THE EDITOR 

Wannier ladders and perturbation theory 

Vincenzo Grecchit, Marco Maiolit and Andrea Sacchettif 
t Dipartimento di Matematica, Universiti di Bologna, 1-40127 Bologna, Italy 
$ Diparlimento di Matematica, Universita di Modena, 1-41100 Mcdena, Italy 

Received 4 Noxmber 1992 

Abstract. Following Awon we mnsidq the Stark effect for.Bloch electrons in the case 
of a finite number of gaps. We prove that the ladders of resonances are given by the 
Wannier decoupled-band approximation and the perturbation theory. The Fermi golden 
rule yields the width behaviour of Buslaev and Dmitrieva. 

Despite the fact that Wannier ladder states seem to play an important role in the 
understanding of electrical conductivity in crystals 111, experimental observations and 
theoretical proofs of existence took a long time to appear. Some numerical methods 
have given the first evidence of the existence of such states as resonances [2]. 
For the experimental observations it was essential to introduce the superlattices, 
that is materials which essentially exhibit one-dimensional properties [3,4]. On 
the theoretical side resonances are defined as eigenvalues of a non-self-adjoint 
operator [5] and only in the last few years has rigorous proof of the existence of 
resonances been given. They are based on semiclassical methods, i.e. the existence 
of resonances is given as the electric field strength goes to zero together with f i  [6,7] 
or for large electric field strength [8] or the existence of resonances in cTstals and 
disordered systems is given for large atomic distance [9]. 

In this paper, making the assumption of a finite number of bands [lO,ll] we 
are able to define the resonances by means of a relatively compact perturbation 
operator with respect to the Wannier decoupled-band (DB) approximation in the 
Crystal momentum representation (CMR) and we prove the existence of ladders of 
resonances for arbitrarily small electric field strength; indeed, we have no semiclassical 
restriction in our method. 

The proof of existence we give justifies the Wannier decoupled-band approxi- 
mation as the basis of a solvable perturbation calculation and some partial results 
on the behaviour of the resonances suggested for such models. In particular, we 
prove that the second-order perturbation theory gives the second-order Nenciu [12- 
141 asymptotic power series and an exponentially small width (Fermi golden rule) [lo] 
in agreement with the Buslaev-Dmitrieva adiabatic approximation [ll, 151. 

Let us notice that, recently, an important connection has been stressed between 
the Stark-Wannier problem and the quantumchaos one [la]. 
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Let us consider a one-dimensional Bloch Hamiltonian with a finite number of 
gaps; that is, for instance, the periodic Lame potential of period 2n 

where 0 < 1 < 1 and m = 1,2 .  . . . Here Sn(z, t )  is the Jacobian elliptic function 
of period 41C(t), the potential in (1) is real analytic in the strip IImrl 6 2a, where 
a. 6 dJ415. The spectrum of H, is given by m + 1 bands, i.e. only the first 
m gaps are open [17]. In the following we shall assume m = 1 for the sake of 
simplicity. In the CMR the corresponding operator to the Stark-Wannier Hamiltonian 
HF = H B  + Fx takes the form H, = H;B + F W  and acts on '7i = 'Hl $EHz, where 
31, = L2(B,dk), B is the Brillouin zone, that is the torus R/1 with representatives 
on (0, -!-I], and 'H, = LZ(R,dp). Here 

HFB is called the Wannier decoupled-band (DB) approximation, H ,  = iF8, +E,(k),  
H, = iF8, + C22(p), E,(k) and E,(p)  are the band functions, X2,1 and Xl,2 are the 
interband terms between bands and A'z,z is the intraband term on the second band 
(the intraband term on the f i t  one vanishes identically). 

In order to obtain the resonances as eigenvalues of a non-self-adjoint operator 
we use the analytic translation z - x - ia (we take a Q a,,). The CMR of the 
distorted operator, which we s h d  call H$ or simply H,, has DB approximation such 
that HP E H I  and H; = H, - iFa. Hence, the essential spechum of the DB 
approximation is C,(HgB) = -iFa t R and the discrete spectrum coincides with 
the Wannier ladder {El,j, j E Z}, where El,j = (E1) + 27rjF and (El) denotes the 
mean value of the first band function. 

Let us consider the usual RayleighSchrodinger perturbation theory, where H:B 
is the unperturbed operator and U: is a perturbation: HF(f) = IfgB + fM', 
f E C is an auxiliary parameter which plays the role of the perturbative one in 
the perturbation theory (for f = F we have, of course, HF( F )  = HF). As we 
shall show, the interband term W is bounded and, in particular, relatively compact 
with respect to the DB approximation; hence, we have the stabiliiy of the essential 
spectrum: 

Therefore C ( H F )  - C,(HF) = C,(HF)  defines the resonances in the strip 
-Fa < Imz < 0, as it is known in the usual x-representation [5]. 

E , , ( H F )  = C,(HF DB ) - - ' F a + R .  - ' (3) 

Indeed, we have the following result. 

Proposition. There exists Fo > 0 such that for each fixed F, 0 < F < Fo the 
Stark-Wannier Hamiltonian has one ladder of resonances E l , j ( F ) ,  j E Z which is 
close, up to a term of order F2, to the Wannier ladder of eigenvalues and given 
by E l , j ( F )  = E, , j (F ,F)  where El, j(f ,F) = C ~ = o f " c , ( F )  is analytic in f for 
I f 1  < F and it is expressed by the RayleighSchrodinger perturbation formula 
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where R , ( f )  is the projection of the resolvent of H F ( f )  on 'H,, E, = E,,,, and r 
is the clockwise contour IE- Ell = d F Z ,  for suitable d > 0. 

Remurk. Let us stress that the above convergent perturbation series Fncn(F)  = 
E I j ( F )  has F-dependent coefficients. The asymptotic power series expansion 
EIJ( F )  - E, Fnd, is considered elsewhere [12-141. 

We give now a sketch of the proof of the proposition [IS]. First of all we need to 
explicitly consider the interband and intraband operators; they act on (a,, az) E 'H as 

(X;I~I)(P) := X Z , I ( P ) ~ I ( P )  sib) = ai (k)  VP = k + L V L  E 

xZ,,(p) = iC w I p ' ( ~ ) .  a ,w:p ) (~ )  (54 
JEZ 

Here w l k ) ( J )  and w p ) ( J )  are the Fourier coefficients of the periodic functions 
(since the Lam6 potential is even, they are real analytic), where p,(+ ,k)  = 

eik5u,(r ,  k) and p z ( r , p )  = eipru2(r,p) are the Bloch functions. Let us stress that 
p 2 ( r , p )  are orthonormal functions on L z ( [ - x ,  n],dr/2n), so we have X ; , ( p )  0. 

The important point is that the Bloch functions are regular in the quasi- 
momentum complex plane with the exception of the branch points $ = k, * ih,, 
k, = and h, > 0 , and in the strip o€ width 4a0 around the r-real axis. Indeed, 
analyticity of the Bloch function in the quasi-momentum complex plane plays an 
important role in proving the boundedness of X2,z. 

Now, by taking the potential as a perturbation, we have that the periodic Bloch 
function ul(x,k) is bounded and u2(r ,p )  = 1 + O(p- ' ) ,  uniformly as p goes to 
infinity, for x and p in the strips I Imrl  < 2ao and [Imp/ 6 h,/2 [19]. Hence, from 
the exponentially decaying behaviour of the Fourier coefficients of q,,, the following 
estimates hold 

I X , ~ , ( P ) ~  s c e x p [ - l ~ I a , l / ( ~  t P') and l ~ z , l ( ~ ) t  < ~ e x p I - l ~ l a ~ l  (6) 

and, in particular, W is norm-bounded and, as one can verify, relatively compact 
(HilbertSchmidt) with respect to HFB. 

In order to prove the proposition we should control R,( f )  as a uniformly bounded 
operator for E E r and I f 1  6 F .  We consider the expression 

Ri(f)  = R1(0)[1- 4f) l - '  where 4 f )  = X1,2[1 + 4 W 1 - l  T(f) .  
(7) 

Here, Q(f) = fRz(0)X2,2, T(f) = fZ&(0)X2,1R,(O) and Ri(0), i = 1,2, are the 
projection of the resolvent of H g B  on 'Hi, that is  Ri(0) = [ H i  - El-'. We are able 
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to prove that Qz( f) has norm less than 1 for any [ f l  < F and E E r, for F small 
enough; so that A( f) is a bounded operator. Analogously, we have a norm bound 
less than 1 for A(f), so that the uniform boundedness of R , ( f )  follows and the 
RayleighSchrGdinger series is convergent for f = F .  These estimates are based on 
the explicit expression of Ri(0)  as an integral operator and on (6). For instance, the 
operator T(f) is norm bounded by C / d ,  where C is a positive constan& therefore 
the norm of A( ! )  will be less than 1 for a suitable d. In fact, by fixing f = F for 
simplicity, we obtain for any U E 31, 

where 
above announced estimate on T holds since the integral 

are the solutions of [X, - E]+,,, = 0 and p = i ( E  - E,)/F. The 

WP) = ~ ' m X z , l ( T ) ~ ~ l ( T ) + l ( T j d T  P (9) 

is absolutely convergent and, by the stationary-phase method, it is bounded by 
FC{exp[-aolpl] + ~ ( - ~ , ~ ~ ( p ) } ,  where xr is the characteristic function on the set I .  
The norm estimate on Q2 follows in the same way since llQZll = O ( 0 )  by the 
stationay-phase method. The sketch of the proof of the proposition is therefore 
completed. 

Let us state some qualitative results which have been previously discussed and 
which now, following the convergence of the perturbation series, assume a definitive 
status. From (4) one can easily obtain the second-order perturbation term for 
El,,( F):  

Integrating by parts the integral of the right-hand side of (IO), we have 

Hence, the second order of the regular perturbation theory gives exactly the second 
order of the asymptotic expansion [IZ-141 adapted to the case of a finite number of 
gaps. 

Finally, following Avron [lo], we compute rigorously, by the saddle point method, 
the imaginary part behaviour. In fact, the second-order approximation (Fermi golden 
rule) gives 
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where the saddle point z1 coincides with a polar singularity of X,,,(p) as well as 
with a branch point of square root type of the band functions. More precisely, let 
wp) and wp’ be f?(Z) analytic vectors on a connected domain R of the Riemann 
four-sheeted surface of (p  - $ ) ‘ I 4  containing the interval [0,1], where they are real 
orthonormal 1201. Thus we have the bilinear scalar product (w; ,  wj)@ E 61 on all 
0. The z: singularity connects w, with w2 in the sense that, surrounding L: clock- 
wise once, we have TO* + w2 and w2 + -tu1. So, we can write, in L = (p  - zl). 

1 -  - +-‘I4(u + bz112) and w p )  = iz-’14(a - bz1I2), where a and b are l z ( Z )  
analytic vectors such that ( a ,  a )  5 (b ,  b) 5 0 and (U, b) 3 4. Hence, 

X,,,(P) = i(wp),8,w?)) = 1/(4z) t ((a,a,b) - (B,a,b)) (13) 

so that X , , ( p )  has isolated polar singularities at p = z: with residue &:. The 
stationary-phase evaluation is determined by the minimal angle between two steepest 
descent directions: 4 r / 3  and the pole residue. So, one has that 

I m E & ( F )  = -FC [l t O(F2/’))1 exp[-2pz(F)] (14) 

where C = d / 1 8  and p z ( F )  is the Zener length of the effective barrier created by 
the tilted gap: 

EF(x) = E,-Fx, risaclockwiseregularcontouraround thecutandp(.) = 
E ( p )  is the energy function defined by C(0) = & ( O )  on the Riemann sheet [11,20] 
with a cut linking directly L: and L;. Let us stress that the asymptotic behaviour 
(14) of the imaginary part of the resonances agrees with the one given by Buslaev and 
Dmitrieva by a completely different adiabatic approximation. More precisely, in the 
one-gap case the Buslaev-Dmitrieva approximation gives for the numerical coefficient 
of the imaginary part the value f that should be compared with our one, that is 
r2/l8. The above discrepancy on the numerical coefficient is not unexpected since 
our perturbation method (Fermi golden rule) does not guarantee the exact asymptotic 
behaviour up to the numerical coefficient. A similar phenomenon has been already 
observed in a semiclassical problem [Zl ,  p 3251: exactly an extra factor x 2 / 9  also 
appears in the first-order Bremmer approximation for a reflection coefficient. 

For the case m > 1, the existence of m ladders of resonances follows from the 
degenerate perturbation theory and one can also prove the existence of (avoided) 
crossing points. In such a problem one expects an accumulation of crossing points 
and oscillations of the width [lo]. 

It is a pleasure to thank Professor Franwis Bentosela for many discussions on 
such problems and Dr Alain Joye for having suggested the reference of Beny and 
Mount [21] in relation to the factor &/9.  This work is partially supported by , 
Ministem dell’UniversitA e d e b  Ricerca Scientifica e Tecnologica. 
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